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Outline

 Review of classical electrical and particle-induced LU in CMOS

« 1St observation of ‘anomalous’ electrical latchup (LU) from ~4 - 50 K
by Deferm et al.

« Temperature dependent electrical LU results — 130 nm test structure

« Heavy ion SEL experiment on 0.5 um ReadOut Integrated Circuit
(ROIC)

« Discussion of particle-induced SEL mechanisms at 20 K
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Review of Inherent CMOS LU Susceptibility  (Ets
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Cross coupled parasitic bipolar transistors inherent to CMOS Technology
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Classical Picture of LU as the Temperature Drops NA
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« Electrical and particle-induced LU susceptibilities decrease because:

 Well & substrate resistances decrease due to increase in mobility
and carrier freeze-out.

* Vgerequired to support a given collect current increases.

« Parasitic bipolar gain product is decreasing exponentially with
temperature (and also viatemperature dependence of the
bandgap narrowing in the emitter).

« Often has little quantitative effect on LU characteristics.

« Below ~75-100 K, regenerative feedback is no longer possible, since

BrpnBpnp < 1 for the two parasitic BJT common-emitter current gains.
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« Deferm et al. suggest shallow-

level impact ionization as the e 300
source of an exponential EL 1.25 ym n-well CMOS |
Increase in free carriers once S 4 E
athreshold field is reached in g — {200 5
the internal n- and p- regions 8 ~F p
of the parasitic pnpn S =
structure, resulting in 2 215 1 100 o
significant current flow. k= : __J a— »3"1
- LU condition becomes: + eSolete 2
BrpnBpnp> (MaMp)™? %0 0 200 300

Temperature (K)

where M, & M, are the shallow
level impact ionization Gain product ~ 1
coefficients (or rates) for
electrons & holes
After Deferm et al., Cryogenics 30, 1990.
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Temperature Dependence of Key LU Parameters
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Electrical LU measurements via anode injection

130 nm IBM pnpn test structure « Note changes ~50 K
where shallow level
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Dominant Impurity lonization Mechanisms vs Temperature
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After Simoen et al., “Charge
transport in a Si resistor at liquid
—He temperatures,” JAP 68 (8),
1990.
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Dominant Impurity lonization Mechanisms vs Temperature
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After Simoen et al., “Charge transport in a Si resistor at
liquid —He temperatures,” JAP 68 (8), 1990.

Presented by Cheryl Marshall, 2010 NSREC, Denver, CO, July 20, 2010



Heavy lon SEL Test Description of 0.5 um ROIC
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« AMI C5 bulk process on lightly
doped p-substrate

* ROIC fully functional during
testing (4 channels at 500 kHz).

 Four key voltages & associated
currents monitored every 25 us

 Real time visibility on all
supplies

* V4 (logic portion of readout
circuitry) was only supply

to latch
« ROIC health monitored He cryostat ir_1 fron_t of
throughout the test. TAMU beam line. Five

ROICs tested.
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Typical Hard SEL and Self-Quenching

High Current Event Signatures o e
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ROIC Latchup Behavior at 20 K
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Effective LET (MeV+cm?/mg)

LET,~3.3at 20K, but 15< LET,, <20 at 300 K
‘Saturated’ cross section 2-3 X higher at 300 K

Diffusion from substrate
IS important

No SEL observed for
LET =40 & R, ~4-5 um!

« Ar-40ion deposited
28 MeV

 Only self-recovered
high current events

Ar-40 ion delivered 80
MeV within 10 um

* Penetrated the
junction region

« Both self-recovered
and hard SEL events
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Shallow-Level Impact lonization (SLII) Mechanism m
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 Free carriers produced by ion strike initiates exponential growth in free
carriers in internal p- and n-region of parasitic pnpn structure that meet
the modest electric field threshold for SLII (E,)

« Thehigh V, we observed are expected for 15t order shallow level impact
lonization LU model, and are comparable to those observed by Deferm et al.
- V=2V, +(E,;)/A-C spacing
« Vy~4-5VforDefermetal. at4-~50K
 Our dataclearly indicate importance of lightly doped p-substrate
* SEL cross section reduction striking for R, <30 um at 20 K
« Slight temperature dependence from 200-300 K
 Changes in R & Vge with temperature decrease SEL probability
« Charge collection efficiency may be greater at lower temperatures

« Longer diffusion length and lower recombination efficiency
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« Cryogenic SEL is indeed possible and represents a new qualification concern.

« Shallow-level impact ionization is a very plausible mechanism to provide a
source of carriers below roughly 50 K.

 NASA requires cryogenic operation for ROICs, ASICs and other CMOS
devices for IR sensor applications as well as extreme environments.

« Very little data exists for ion-induced SEL below room temperature

« We see a significantly lower SEL threshold at 20 K compared to room
temperature.

- ‘Saturated’ cross section is ~2 - 3 higher at 300 K.

« Datain the ‘classical’ regime from 100 — 300 K show SEL behavior
beginning at 135 K.

 Very modest temperature dependence of the SEL cross section from
~200 - 300 K.

« Similar results for 2"d ROIC on epi from different vendor.
 ‘Testas you fly’
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